Course Outline
Introduction to Robot Learning
- Overview of machine learning in robotics
- Supervised vs unsupervised vs reinforcement learning
- Applications of RL in control, navigation, and manipulation
Fundamentals of Reinforcement Learning
- Markov decision processes (MDP)
- Policy, value, and reward functions
- Exploration vs exploitation trade-offs
Classical RL Algorithms
- Q-learning and SARSA
- Monte Carlo and temporal difference methods
- Value iteration and policy iteration
Deep Reinforcement Learning Techniques
- Combining deep learning with RL (Deep Q-Networks)
- Policy gradient methods
- Advanced algorithms: A3C, DDPG, and PPO
Simulation Environments for Robot Learning
- Using OpenAI Gym and ROS 2 for simulation
- Building custom environments for robotic tasks
- Evaluating performance and training stability
Applying RL to Robotics
- Learning control and motion policies
- Reinforcement learning for robotic manipulation
- Multi-agent reinforcement learning in swarm robotics
Optimization, Deployment, and Real-World Integration
- Hyperparameter tuning and reward shaping
- Transferring learned policies from simulation to reality (Sim2Real)
- Deploying trained models on robotic hardware
Summary and Next Steps
Requirements
- An understanding of machine learning concepts
- Experience with Python programming
- Familiarity with robotics and control systems
Audience
- Machine learning engineers
- Robotics researchers
- Developers building intelligent robotic systems
Delivery Options
Private Group Training
Our identity is rooted in delivering exactly what our clients need.
- Pre-course call with your trainer
- Customisation of the learning experience to achieve your goals -
- Bespoke outlines
- Practical hands-on exercises containing data / scenarios recognisable to the learners
- Training scheduled on a date of your choice
- Delivered online, onsite/classroom or hybrid by experts sharing real world experience
Private Group Prices RRP from £5700 online delivery, based on a group of 2 delegates, £1800 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.
Contact us for an exact quote and to hear our latest promotions
Public Training
Please see our public courses
Testimonials (1)
its knowledge and utilization of AI for Robotics in the Future.