Online or onsite, instructor-led live Neural Network training courses demonstrate through interactive discussion and hands-on practice how to construct Neural Networks using a number of mostly open-source toolkits and libraries as well as how to utilise the power of advanced hardware (GPUs) and optimization techniques involving distributed computing and big data. Our Neural Network courses are based on popular programmeming languages such as Python, Java, R language, and powerful libraries, including TensorFlow, Torch, Caffe, Theano and more. Our Neural Network courses cover both theory and implementation using a number of neural network implementations such as Deep Neural Networks (DNN), Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).
Neural Network training is available as "online live training" or "onsite live training". Online live training (aka "remote live training") is carried out by way of an interactive, remote desktop. Onsite live Neural Networks trainings in the UK can be carried out locally on customer premises or in NobleProg corporate training centres.
NobleProg -- Your Local Training Provider
Testimonials
★★★★★
★★★★★
It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.
Jonathan Blease
Course: Artificial Neural Networks, Machine Learning, Deep Thinking
Working from first principles in a focused way, and moving to applying case studies within the same day
Maggie Webb - Margaret Elizabeth Webb, Department of Jobs, Regions, and Precincts
Course: Artificial Neural Networks, Machine Learning, Deep Thinking
Working with real industry-leading ML tools, real datasets and being able to consult with a very experienced data scientist.
Zakład Usługowy Hakoman Andrzej Cybulski
Course: Applied AI from Scratch in Python
That it was applying real company data.
Trainer had a very good approach by making trainees participate and compete
Jimena Esquivel - Zakład Usługowy Hakoman Andrzej Cybulski
Course: Applied AI from Scratch in Python
The trainer was a professional in the subject field and related theory with application excellently
Fahad Malalla - Tatweer Petroleum
Course: Applied AI from Scratch in Python
Very flexible
Frank Ueltzhöffer
Course: Artificial Neural Networks, Machine Learning and Deep Thinking
Abhi always made sure we were following along. Good mix of practice and theory.
Margaret Elizabeth Webb, Department of Jobs, Regions, and Precincts
Course: Deep Reinforcement Learning with Python
The informal exchanges we had during the lectures really helped me deepen my understanding of the subject
Explore
Course: Deep Reinforcement Learning with Python
Really simple, easy to follow explanations
Covered everything necessary in enough detail to understand fully, but so that it was not overwhelming
good mix of theory and practice
Margaret Elizabeth Webb, Department of Jobs, Regions, and Precincts
Course: Introduction to the use of neural networks
the interactive part, tailored to our specific needs
Thomas Stocker
Course: Introduction to the use of neural networks
Ann created a great environment to ask questions and learn. We had a lot of fun and also learned a lot at the same time.
Gudrun Bickelq
Course: Introduction to the use of neural networks
Graphs in R :)))
Faculty of Economics and Business Zagreb
Course: Neural Network in R
We gained some knowledge about NN in general, and what was the most interesting for me were the new types of NN that are popular nowadays.
This is a 4 day course introducing AI and it's application using the Python programming language. There is an option to have an additional day to undertake an AI project on completion of this course.
This instructor-led, live training in the UK (online or onsite) is aimed at developers and data scientists who wish to learn the fundamentals of Deep Reinforcement Learning as they step through the creation of a Deep Learning Agent.
By the end of this training, participants will be able to:
Understand the key concepts behind Deep Reinforcement Learning and be able to distinguish it from Machine Learning.
Apply advanced Reinforcement Learning algorithms to solve real-world problems.
This course has been created for managers, solutions architects, innovation officers, CTOs, software architects and anyone who is interested in an overview of applied artificial intelligence and the nearest forecast for its development.
This course covers AI (emphasizing Machine Learning and Deep Learning) in Automotive Industry. It helps to determine which technology can be (potentially) used in multiple situation in a car: from simple automation, image recognition to autonomous decision making.
Artificial Neural Network is a computational data model used in the development of Artificial Intelligence (AI) systems capable of performing "intelligent" tasks. Neural Networks are commonly used in Machine Learning (ML) applications, which are themselves one implementation of AI. Deep Learning is a subset of ML.
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
This training course is for people that would like to apply Machine Learning in practical applications.
Audience
This course is for data scientists and statisticians that have some familiarity with statistics and know how to program R (or Python or other chosen language). The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization.
The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work.
Sector specific examples are used to make the training relevant to the audience.
Artificial Neural Network is a computational data model used in the development of Artificial Intelligence (AI) systems capable of performing "intelligent" tasks. Neural Networks are commonly used in Machine Learning (ML) applications, which are themselves one implementation of AI. Deep Learning is a subset of ML.
This instructor-led, live training in the UK (online or onsite) is aimed at researchers and developers who wish to use Chainer to build and train neural networks in Python while making the code easy to debug.
By the end of this training, participants will be able to:
Set up the necessary development environment to start developing neural network models.
Define and implement neural network models using a comprehensible source code.
Execute examples and modify existing algorithms to optimize deep learning training models while leveraging GPUs for high performance.
This instructor-led, live course provides an introduction into the field of pattern recognition and machine learning. It touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics.
The course is interactive and includes plenty of hands-on exercises, instructor feedback, and testing of knowledge and skills acquired.
Encog is an open-source machine learning framework for Java and .Net.
In this instructor-led, live training, participants will learn advanced machine learning techniques for building accurate neural network predictive models.
By the end of this training, participants will be able to:
Implement different neural networks optimization techniques to resolve underfitting and overfitting
Understand and choose from a number of neural network architectures
Implement supervised feed forward and feedback networks
Audience
Developers
Analysts
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Encog is an open-source machine learning framework for Java and .Net.
In this instructor-led, live training, participants will learn how to create various neural network components using ENCOG. Real-world case studies will be discussed and machine language based solutions to these problems will be explored.
By the end of this training, participants will be able to:
Prepare data for neural networks using the normalization process
Implement feed forward networks and propagation training methodologies
Implement classification and regression tasks
Model and train neural networks using Encog's GUI based workbench
Integrate neural network support into real-world applications
Audience
Developers
Analysts
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Artificial intelligence has revolutionized a large number of economic sectors (industry, medicine, communication, etc.) after having upset many scientific fields. Nevertheless, his presentation in the major media is often a fantasy, far removed from what really are the fields of Machine Learning or Deep Learning. The aim of this course is to provide engineers who already have a master's degree in computer tools (including a software programming base) an introduction to Deep Learning as well as to its various fields of specialization and therefore to the main existing network architectures today. If the mathematical bases are recalled during the course, a level of mathematics of type BAC + 2 is recommended for more comfort. It is absolutely possible to ignore the mathematical axis in order to maintain only a "system" vision, but this approach will greatly limit your understanding of the subject.
In this instructor-led, live training, participants will learn how to use Matlab to design, build, and visualize a convolutional neural network for image recognition.
By the end of this training, participants will be able to:
Build a deep learning model
Automate data labeling
Work with models from Caffe and TensorFlow-Keras
Train data using multiple GPUs, the cloud, or clusters
Audience
Developers
Engineers
Domain experts
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
This instructor-led, live training in the UK (online or onsite) is aimed at engineers who wish to learn about the applicability of artificial intelligence to mechatronic systems.
By the end of this training, participants will be able to:
Gain an overview of artificial intelligence, machine learning, and computational intelligence.
Understand the concepts of neural networks and different learning methods.
Choose artificial intelligence approaches effectively for real-life problems.
Implement AI applications in mechatronic engineering.
Microsoft Cognitive Toolkit 2.x (previously CNTK) is an open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. According to Microsoft, CNTK can be 5-10x faster than TensorFlow on recurrent networks, and 2 to 3 times faster than TensorFlow for image-related tasks.
In this instructor-led, live training, participants will learn how to use Microsoft Cognitive Toolkit to create, train and evaluate deep learning algorithms for use in commercial-grade AI applications involving multiple types of data such as data, speech, text, and images.
By the end of this training, participants will be able to:
Access CNTK as a library from within a Python, C#, or C++ program
Use CNTK as a standalone machine learning tool through its own model description language (BrainScript)
Use the CNTK model evaluation functionality from a Java program
Combine feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs)
Scale computation capacity on CPUs, GPUs and multiple machines
Access massive datasets using existing programming languages and algorithms
Audience
Developers
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Note
If you wish to customize any part of this training, including the programming language of choice, please contact us to arrange.
This course will give you knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).
This training is more focus on fundamentals, but will help you to choose the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.
This classroom based training session will contain presentations and computer based examples and case study exercises to undertake with relevant neural and deep network libraries
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.
In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.
By the end of this training, participants will be able to:
Set up and configure PaddlePaddle
Set up a Convolutional Neural Network (CNN) for image recognition and object detection
Set up a Recurrent Neural Network (RNN) for sentiment analysis
Set up deep learning on recommendation systems to help users find answers
Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.
Audience
Developers
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
This instructor-led, live training in the UK (online or onsite) is aimed at data scientists who wish to use Python to build recommender systems.
By the end of this training, participants will be able to:
Create recommender systems at scale.
Apply collaborative filtering to build recommender systems.
Use Apache Spark to compute recommender systems on clusters.
Build a framework to test recommendation algorithms with Python.
Snorkel is a system for rapidly creating, modeling, and managing training data. It focuses on accelerating the development of structured or "dark" data extraction applications for domains in which large labeled training sets are not available or easy to obtain.
In this instructor-led, live training, participants will learn techniques for extracting value from unstructured data such as text, tables, figures, and images through modeling of training data with Snorkel.
By the end of this training, participants will be able to:
Programmatically create training sets to enable the labeling of massive training sets
Train high-quality end models by first modeling noisy training sets
Use Snorkel to implement weak supervision techniques and apply data programming to weakly-supervised machine learning systems
Audience
Developers
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
In this instructor-led, live training in the UK, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications.
By the end of the training, participants will be able to:
Train various types of neural networks on large amounts of data.
Use TPUs to speed up the inference process by up to two orders of magnitude.
Utilize TPUs to process intensive applications such as image search, cloud vision and photos.
This course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).
Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.
Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy.
Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow.
Audience
This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects
After completing this course, delegates will:
have a good understanding on deep neural networks(DNN), CNN and RNN
understand TensorFlow’s structure and deployment mechanisms
be able to carry out installation / production environment / architecture tasks and configuration
be able to assess code quality, perform debugging, monitoring
be able to implement advanced production like training models, building graphs and logging
We respect the privacy of your email address. We will not pass on or sell your address to others. You can always change your preferences or unsubscribe completely.