Deep Reinforcement Learning with Python Training Course
Deep Reinforcement Learning refers to the ability of an "artificial agent" to learn by trial-and-error and rewards-and-punishments. An artificial agent aims to emulate a human's ability to obtain and construct knowledge on its own, directly from raw inputs such as vision. To realize reinforcement learning, deep learning and neural networks are used. Reinforcement learning is different from machine learning and does not rely on supervised and unsupervised learning approaches.
This instructor-led, live training (online or onsite) is aimed at developers and data scientists who wish to learn the fundamentals of Deep Reinforcement Learning as they step through the creation of a Deep Learning Agent.
By the end of this training, participants will be able to:
- Understand the key concepts behind Deep Reinforcement Learning and be able to distinguish it from Machine Learning.
- Apply advanced Reinforcement Learning algorithms to solve real-world problems.
- Build a Deep Learning Agent.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction
Reinforcement Learning Basics
Basic Reinforcement Learning Techniques
Introduction to BURLAP
Convergence of Value and Policy Iteration
Reward Shaping
Exploration
Generalization
Partially Observable MDPs
Options
Logistics
TD Lambda
Policy Gradients
Deep Q-Learning
Topics in Game Theory
Summary and Next Steps
Requirements
- Proficiency in Python
- An understanding of college Calculus and Linear Algebra
- Basic understanding of Probability and Statistics
- Experience creating machine learning models in Python and Numpy
Audience
- Developers
- Data Scientists
Need help picking the right course?
Deep Reinforcement Learning with Python Training Course - Booking
Deep Reinforcement Learning with Python Training Course - Enquiry
Deep Reinforcement Learning with Python - Consultancy Enquiry
Provisonal Upcoming Courses (Contact Us For More Information)
Related Courses
Advanced Stable Diffusion: Deep Learning for Text-to-Image Generation
21 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at intermediate to advanced-level data scientists, machine learning engineers, deep learning researchers, and computer vision experts who wish to expand their knowledge and skills in deep learning for text-to-image generation.
By the end of this training, participants will be able to:
- Understand advanced deep learning architectures and techniques for text-to-image generation.
- Implement complex models and optimizations for high-quality image synthesis.
- Optimize performance and scalability for large datasets and complex models.
- Tune hyperparameters for better model performance and generalization.
- Integrate Stable Diffusion with other deep learning frameworks and tools
Introduction to Stable Diffusion for Text-to-Image Generation
21 HoursThis instructor-led, live training in (online or onsite) is aimed at data scientists, machine learning engineers, and computer vision researchers who wish to leverage Stable Diffusion to generate high-quality images for a variety of use cases.
By the end of this training, participants will be able to:
- Understand the principles of Stable Diffusion and how it works for image generation.
- Build and train Stable Diffusion models for image generation tasks.
- Apply Stable Diffusion to various image generation scenarios, such as inpainting, outpainting, and image-to-image translation.
- Optimize the performance and stability of Stable Diffusion models.
Edge AI with TensorFlow Lite
14 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at intermediate-level developers, data scientists, and AI practitioners who wish to leverage TensorFlow Lite for Edge AI applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of TensorFlow Lite and its role in Edge AI.
- Develop and optimize AI models using TensorFlow Lite.
- Deploy TensorFlow Lite models on various edge devices.
- Utilize tools and techniques for model conversion and optimization.
- Implement practical Edge AI applications using TensorFlow Lite.
TensorFlow Lite for Embedded Linux
21 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.
By the end of this training, participants will be able to:
- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand the scope of operations that can be run.
- Deploy a deep learning model on an embedded device running Linux.
TensorFlow Lite for Android
21 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.
By the end of this training, participants will be able to:
- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.
TensorFlow Lite for iOS
21 HoursThis instructor-led, live training in (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.
By the end of this training, participants will be able to:
- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.
Tensorflow Lite for Microcontrollers
21 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.
By the end of this training, participants will be able to:
- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.
Deep Learning Neural Networks with Chainer
14 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at researchers and developers who wish to use Chainer to build and train neural networks in Python while making the code easy to debug.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start developing neural network models.
- Define and implement neural network models using a comprehensible source code.
- Execute examples and modify existing algorithms to optimize deep learning training models while leveraging GPUs for high performance.
Distributed Deep Learning with Horovod
7 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at developers or data scientists who wish to use Horovod to run distributed deep learning trainings and scale it up to run across multiple GPUs in parallel.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start running deep learning trainings.
- Install and configure Horovod to train models with TensorFlow, Keras, PyTorch, and Apache MXNet.
- Scale deep learning training with Horovod to run on multiple GPUs.
Accelerating Deep Learning with FPGA and OpenVINO
35 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at data scientists who wish to accelerate real-time machine learning applications and deploy them at scale.
By the end of this training, participants will be able to:
- Install the OpenVINO toolkit.
- Accelerate a computer vision application using an FPGA.
- Execute different CNN layers on the FPGA.
- Scale the application across multiple nodes in a Kubernetes cluster.
Building Deep Learning Models with Apache MXNet
21 HoursThis instructor-led, live training in (online or onsite) is aimed at data scientists who wish to use Apache MXNet's to build and deploy a deep learning model for image recognition.
By the end of this training, participants will be able to:
- Install and configure Apache MXNet and its components.
- Understand MXNet's architecture and data structures.
- Use Apache MXNet's low-level and high-level APIs to efficiently build neural networks.
- Build a convolutional neural network for image classification.
Deep Learning with Keras
21 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at technical persons who wish to apply deep learning model to image recognition applications.
By the end of this training, participants will be able to:
- Install and configure Keras.
- Quickly prototype deep learning models.
- Implement a convolutional network.
- Implement a recurrent network.
- Execute a deep learning model on both a CPU and GPU.
Advanced Deep Learning with Keras and Python
14 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at software engineers who wish to develop advanced deep learning neural-networks and model using Keras and Python.
By the end of this training, participants will be able to:
- Apply deep learning with supervised or unsupervised learning methods.
- Develop, train, and implement concurrent neural networks and recurrent neural networks.
- Use Keras and Python to build deep learning models to solve problems involving images, text, sound, and more.
Deep Learning for Self Driving Cars
21 HoursThis instructor-led, live training in the UK (online or onsite) is aimed at developers who wish to build a self-driving car using deep learning techniques.
By the end of this training, participants will be able to:
- Use Keras to build and train a convolutional neural network.
- Use computer vision techniques to identify lanes in an autonomos driving project.
- Train a deep learning model to differentiate traffic signs.
- Simulate a fully autonomous car.
Torch for Machine and Deep Learning
21 HoursTorch is an open source machine learning library and a scientific computing framework based on the Lua programming language. It provides a development environment for numerics, machine learning, and computer vision, with a particular emphasis on deep learning and convolutional nets. It is one of the fastest and most flexible frameworks for Machine and Deep Learning and is used by companies such as Facebook, Google, Twitter, NVIDIA, AMD, Intel, and many others.
In this instructor-led, live training, we cover the principles of Torch, its unique features, and how it can be applied in real-world applications. We step through numerous hands-on exercises all throughout, demonstrating and practicing the concepts learned.
By the end of the course, participants will have a thorough understanding of Torch's underlying features and capabilities as well as its role and contribution within the AI space compared to other frameworks and libraries. Participants will have also received the necessary practice to implement Torch in their own projects.
Format of the Course
- Overview of Machine and Deep Learning
- In-class coding and integration exercises
- Test questions sprinkled along the way to check understanding