Online or onsite, instructor-led live GPU (Graphics Processing Unit) training courses demonstrate through interactive discussion and hands-on practice the fundamentals of GPU and how to program GPUs.
GPU training is available as "online live training" or "onsite live training". Online live training (aka "remote live training") is carried out by way of an interactive, remote desktop. Onsite live GPU trainings in Newcastle can be carried out locally on customer premises or in NobleProg corporate training centers.
NobleProg -- Your Local Training Provider
Newcastle
116 Quayside, Newcastle upon Tyne, united kingdom, NE1 3DY
The Newcastle Quayside Centre is in a prestigious riverside location close to the River Tyne occupying three floors of a five-storey building with a glass front and modern interior. The views of the famous Tyne Bridge and recently built Millennium Bridge are stunning. The recently restored Baltic Centre for Contemporary Art is directly opposite, next to the Sage Gateshead performing arts and conference centre. The vibrant and energetic city of Newcastle is a modern, attractive and compact location with a strong identity where businesses prosper and people enjoy a quality of life that is second to none. This area is among the most successful in the UK for attracting investment from abroad and is already the preferred location of many Far Eastern and US companies entering the European market. Over 130 investors from 15 countries have chosen to locate in and around the city, joining a business community of over 17,000 companies.
This instructor-led, live training in Newcastle (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to use OpenACC to program heterogeneous devices and exploit their parallelism.
By the end of this training, participants will be able to:
Set up an OpenACC development environment.
Write and run a basic OpenACC program.
Annotate code with OpenACC directives and clauses.
This instructor-led, live training in Newcastle (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to learn the basics of GPU programming and the main frameworks and tools for developing GPU applications.
By the end of this training, participants will be able to: Understand the difference between CPU and GPU computing and the benefits and challenges of GPU programming.
Choose the right framework and tool for their GPU application.
Create a basic GPU program that performs vector addition using one or more of the frameworks and tools.
Use the respective APIs, languages, and libraries to query device information, allocate and deallocate device memory, copy data between host and device, launch kernels, and synchronize threads.
Use the respective memory spaces, such as global, local, constant, and private, to optimize data transfers and memory accesses.
Use the respective execution models, such as work-items, work-groups, threads, blocks, and grids, to control the parallelism.
Debug and test GPU programs using tools such as CodeXL, CUDA-GDB, CUDA-MEMCHECK, and NVIDIA Nsight.
Optimize GPU programs using techniques such as coalescing, caching, prefetching, and profiling.
This instructor-led, live training in Newcastle (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to use different frameworks for GPU programming and compare their features, performance, and compatibility.
By the end of this training, participants will be able to:
Set up a development environment that includes OpenCL SDK, CUDA Toolkit, ROCm Platform, a device that supports OpenCL, CUDA, or ROCm, and Visual Studio Code.
Create a basic GPU program that performs vector addition using OpenCL, CUDA, and ROCm, and compare the syntax, structure, and execution of each framework.
Use the respective APIs to query device information, allocate and deallocate device memory, copy data between host and device, launch kernels, and synchronize threads.
Use the respective languages to write kernels that execute on the device and manipulate data.
Use the respective built-in functions, variables, and libraries to perform common tasks and operations.
Use the respective memory spaces, such as global, local, constant, and private, to optimize data transfers and memory accesses.
Use the respective execution models to control the threads, blocks, and grids that define the parallelism.
Debug and test GPU programs using tools such as CodeXL, CUDA-GDB, CUDA-MEMCHECK, and NVIDIA Nsight.
Optimize GPU programs using techniques such as coalescing, caching, prefetching, and profiling.
This instructor-led, live training in Newcastle (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to install and use ROCm on Windows to program AMD GPUs and exploit their parallelism.
By the end of this training, participants will be able to:
Set up a development environment that includes ROCm Platform, a AMD GPU, and Visual Studio Code on Windows.
Create a basic ROCm program that performs vector addition on the GPU and retrieves the results from the GPU memory.
Use ROCm API to query device information, allocate and deallocate device memory, copy data between host and device, launch kernels, and synchronize threads.
Use HIP language to write kernels that execute on the GPU and manipulate data.
Use HIP built-in functions, variables, and libraries to perform common tasks and operations.
Use ROCm and HIP memory spaces, such as global, shared, constant, and local, to optimize data transfers and memory accesses.
Use ROCm and HIP execution models to control the threads, blocks, and grids that define the parallelism.
Debug and test ROCm and HIP programs using tools such as ROCm Debugger and ROCm Profiler.
Optimize ROCm and HIP programs using techniques such as coalescing, caching, prefetching, and profiling.
This instructor-led, live training in Newcastle (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to use ROCm and HIP to program AMD GPUs and exploit their parallelism.
By the end of this training, participants will be able to:
Set up a development environment that includes ROCm Platform, a AMD GPU, and Visual Studio Code.
Create a basic ROCm program that performs vector addition on the GPU and retrieves the results from the GPU memory.
Use ROCm API to query device information, allocate and deallocate device memory, copy data between host and device, launch kernels, and synchronize threads.
Use HIP language to write kernels that execute on the GPU and manipulate data.
Use HIP built-in functions, variables, and libraries to perform common tasks and operations.
Use ROCm and HIP memory spaces, such as global, shared, constant, and local, to optimize data transfers and memory accesses.
Use ROCm and HIP execution models to control the threads, blocks, and grids that define the parallelism.
Debug and test ROCm and HIP programs using tools such as ROCm Debugger and ROCm Profiler.
Optimize ROCm and HIP programs using techniques such as coalescing, caching, prefetching, and profiling.
This instructor-led, live training in Newcastle (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to use CUDA to program NVIDIA GPUs and exploit their parallelism.
By the end of this training, participants will be able to:
Set up a development environment that includes CUDA Toolkit, a NVIDIA GPU, and Visual Studio Code.
Create a basic CUDA program that performs vector addition on the GPU and retrieves the results from the GPU memory.
Use CUDA API to query device information, allocate and deallocate device memory, copy data between host and device, launch kernels, and synchronize threads.
Use CUDA C/C++ language to write kernels that execute on the GPU and manipulate data.
Use CUDA built-in functions, variables, and libraries to perform common tasks and operations.
Use CUDA memory spaces, such as global, shared, constant, and local, to optimize data transfers and memory accesses.
Use CUDA execution model to control the threads, blocks, and grids that define the parallelism.
Debug and test CUDA programs using tools such as CUDA-GDB, CUDA-MEMCHECK, and NVIDIA Nsight.
Optimize CUDA programs using techniques such as coalescing, caching, prefetching, and profiling.
This instructor-led, live training in Newcastle (online or onsite) is aimed at beginner-level system administrators and IT professionals who wish to install, configure, manage, and troubleshoot CUDA environments.
By the end of this training, participants will be able to:
Understand the architecture, components, and capabilities of CUDA.
This instructor-led, live training in Newcastle (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to use OpenCL to program heterogeneous devices and exploit their parallelism.
By the end of this training, participants will be able to:
Set up a development environment that includes OpenCL SDK, a device that supports OpenCL, and Visual Studio Code.
Create a basic OpenCL program that performs vector addition on the device and retrieves the results from the device memory.
Use OpenCL API to query device information, create contexts, command queues, buffers, kernels, and events.
Use OpenCL C language to write kernels that execute on the device and manipulate data.
Use OpenCL built-in functions, extensions, and libraries to perform common tasks and operations.
Use OpenCL host and device memory models to optimize data transfers and memory accesses.
Use OpenCL execution model to control the work-items, work-groups, and ND-ranges.
Debug and test OpenCL programs using tools such as CodeXL, Intel VTune, and NVIDIA Nsight.
Optimize OpenCL programs using techniques such as vectorization, loop unrolling, local memory, and profiling.
This instructor-led, live training in Newcastle (online or onsite) is aimed at intermediate-level developers who wish to use CUDA to build Python applications that run in parallel on NVIDIA GPUs.
By the end of this training, participants will be able to:
Use the Numba compiler to accelerate Python applications running on NVIDIA GPUs.
Create, compile and launch custom CUDA kernels.
Manage GPU memory.
Convert a CPU based application into a GPU-accelerated application.
This instructor-led, live training course in Newcastle covers how to program GPUs for parallel computing, how to use various platforms, how to work with the CUDA platform and its features, and how to perform various optimization techniques using CUDA. Some of the applications include deep learning, analytics, image processing and engineering applications.
Read more...
Last Updated:
Testimonials (2)
Very interactive with various examples, with a good progression in complexity between the start and the end of the training.
Jenny - Andheo
Course - GPU Programming with CUDA and Python
Trainers energy and humor.
Tadeusz Kaluba - Nokia Solutions and Networks Sp. z o.o.
Course - NVIDIA GPU Programming - Extended
Provisional Upcoming Courses (Contact Us For More Information)
Online Graphics Processing Unit (GPU) training in Newcastle, GPU training courses in Newcastle, Weekend GPU (Graphics Processing Unit) courses in Newcastle, Evening GPU (Graphics Processing Unit) training in Newcastle, Graphics Processing Unit instructor-led in Newcastle, Graphics Processing Unit (GPU) private courses in Newcastle, GPU on-site in Newcastle, GPU (Graphics Processing Unit) boot camp in Newcastle, Graphics Processing Unit instructor-led in Newcastle, Graphics Processing Unit (GPU) instructor in Newcastle, Graphics Processing Unit (GPU) classes in Newcastle, Weekend GPU training in Newcastle, GPU trainer in Newcastle, GPU (Graphics Processing Unit) coaching in Newcastle, Graphics Processing Unit (GPU) one on one training in Newcastle, Online GPU (Graphics Processing Unit) training in Newcastle, Evening GPU courses in Newcastle