Course Outline

Introduction

  • Learning through positive reinforcement

Elements of Reinforcement Learning

Important Terms (Actions, States, Rewards, Policy, Value, Q-Value, etc.)

Overview of Tabular Solutions Methods

Creating a Software Agent

Understanding Value-based, Policy-based, and Model-based Approaches

Working with the Markov Decision Process (MDP)

How Policies Define an Agent's Way of Behaving

Using Monte Carlo Methods

Temporal-Difference Learning

n-step Bootstrapping

Approximate Solution Methods

On-policy Prediction with Approximation

On-policy Control with Approximation

Off-policy Methods with Approximation

Understanding Eligibility Traces

Using Policy Gradient Methods

Summary and Conclusion

Requirements

  • Experience with machine learning
  • Programming experience

Audience

  • Data scientists
 21 Hours

Delivery Options

Private Group Training

Our identity is rooted in delivering exactly what our clients need.

  • Pre-course call with your trainer
  • Customisation of the learning experience to achieve your goals -
    • Bespoke outlines
    • Practical hands-on exercises containing data / scenarios recognisable to the learners
  • Training scheduled on a date of your choice
  • Delivered online, onsite/classroom or hybrid by experts sharing real world experience

Private Group Prices RRP from £5700 online delivery, based on a group of 2 delegates, £1800 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.

Contact us for an exact quote and to hear our latest promotions


Public Training

Please see our public courses

Provisional Upcoming Courses (Contact Us For More Information)

Related Categories