Course Outline

Introduction

  • Introduction to Kubernetes
  • Overview of Kubeflow Features and Architecture
  • Kubeflow on AWS vs on-premise vs on other public cloud providers

Setting up a Cluster using AWS EKS

Setting up an On-Premise Cluster using Microk8s

Deploying Kubernetes using a GitOps Approach

Data Storage Approaches

Creating a Kubeflow Pipeline

Triggering a Pipeline

Defining Output Artifacts

Storing Metadata for Datasets and Models

Hyperparameter Tuning with TensorFlow

Visualizing and Analyzing the Results

Multi-GPU Training

Creating an Inference Server for Deploying ML Models

Working with JupyterHub

Networking and Load Balancing

Auto Scaling a Kubernetes Cluster

Troubleshooting

Summary and Conclusion

Requirements

  • Familiarity with Python syntax 
  • Experience with Tensorflow, PyTorch, or other machine learning framework
  • An AWS account with necessary resources

Audience

  • Developers
  • Data scientists
 35 Hours

Delivery Options

Private Group Training

Our identity is rooted in delivering exactly what our clients need.

  • Pre-course call with your trainer
  • Customisation of the learning experience to achieve your goals -
    • Bespoke outlines
    • Practical hands-on exercises containing data / scenarios recognisable to the learners
  • Training scheduled on a date of your choice
  • Delivered online, onsite/classroom or hybrid by experts sharing real world experience

Private Group Prices RRP from £9500 online delivery, based on a group of 2 delegates, £3000 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.

Contact us for an exact quote and to hear our latest promotions


Public Training

Please see our public courses

Testimonials (1)

Provisional Upcoming Courses (Contact Us For More Information)

Related Categories