Python: Machine Learning with Text Training Course

Course Code

pythontextml

Duration

21 hours (usually 3 days including breaks)

Requirements

  • Experience with Python
  • An understanding of machine learning
  • Experience with scikit-learn and pandas

Overview

In this instructor-led, live training, participants will learn how to use the right machine learning and NLP (Natural Language Processing) techniques to extract value from text-based data.

By the end of this training, participants will be able to:

  • Solve text-based data science problems with high-quality, reusable code
  • Apply different aspects of scikit-learn (classification, clustering, regression, dimensionality reduction) to solve problems
  • Build effective machine learning models using text-based data
  • Create a dataset and extract features from unstructured text
  • Visualize data with Matplotlib
  • Build and evaluate models to gain insight
  • Troubleshoot text encoding errors

Audience

  • Developers
  • Data Scientists

Format of the course

  • Part lecture, part discussion, exercises and heavy hands-on practice

Course Outline

Introduction

  • The value of text-based data

Workflow for a Text-Based Data Science Problem

Choosing the Right Machine Learning Libraries

Overview of NLP Techniques

Preparing a Dataset

Visualizing the Data

Working with Text Data with scikit-learn

Building a Machine Learning Model

Splitting into Train and Test Sets

Applying Linear Regression and Non-Linear Regression

Applying NLP Techniques

Parsing Text Data Using Regular Expressions

Exploring Other Machine Language Approaches

Troubleshooting Text Encoding Issues

Closing Remarks

Bookings, Prices and Enquiries

Guaranteed to run even with a single delegate!

Private Classroom

From £4350

Private Remote

From £3900 (96)

Public Classroom

Cannot find a suitable date? Choose Your Course Date >>Too expensive? Suggest your price

Course Discounts

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.