Deep Learning for Vision with Caffe Training Course

Course Code

caffe

Duration

21 hours (usually 3 days including breaks)

Requirements

None

Overview

Caffe is a deep learning framework made with expression, speed, and modularity in mind.

This course explores the application of Caffe as a Deep learning framework for image recognition using MNIST as an example

Audience

This course is suitable for Deep Learning researchers and engineers interested in utilizing Caffe as a framework.

After completing this course, delegates will be able to:

  • understand Caffe’s structure and deployment mechanisms
  • carry out installation / production environment / architecture tasks and configuration
  • assess code quality, perform debugging, monitoring
  • implement advanced production like training models, implementing layers and logging

Course Outline

Installation

  • Docker
  • Ubuntu
  • RHEL / CentOS / Fedora installation
  • Windows

Caffe Overview

  • Nets, Layers, and Blobs: the anatomy of a Caffe model.
  • Forward / Backward: the essential computations of layered compositional models.
  • Loss: the task to be learned is defined by the loss.
  • Solver: the solver coordinates model optimization.
  • Layer Catalogue: the layer is the fundamental unit of modeling and computation – Caffe’s catalogue includes layers for state-of-the-art models.
  • Interfaces: command line, Python, and MATLAB Caffe.
  • Data: how to caffeinate data for model input.
  • Caffeinated Convolution: how Caffe computes convolutions.

New models and new code

  • Detection with Fast R-CNN
  • Sequences with LSTMs and Vision + Language with LRCN
  • Pixelwise prediction with FCNs
  • Framework design and future

Examples:

  • MNIST

 

 

Bookings, Prices and Enquiries

Guaranteed to run even with a single delegate!

Private Classroom

From £3750

Private Remote

From £3300 (95)

Public Classroom

Cannot find a suitable date? Choose Your Course Date >>Too expensive? Suggest your price

Course Discounts

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Some of our clients